CHROM. 6125

STEROIDS

THE USE OF MULTIPLE DEVELOPMENT IN THE CORRELATION OF THE CHEMICAL CONSTITUTIONS AND THE CHROMATOGRAPHIC MIGRATIONS OF SOME 17-KETOSTEROIDS AND THEIR 2,4-DINITROPHENYLHYDRAZONES

J. HAKL

Department of Medical Chemistry, University J. E. Purkyne, Brno (Czechoslovakia) (Received April 17th, 1972)

SUMMARY

The application of thin-layer one-dimensional chromatography to the separation of thirteen 17-ketosteroids and their 2,4-dinitrophenylhydrazones on silica gel is described. In addition to presenting the R_F and R_M values in two systems, the value of using multiple development for the calculation of ΔR_M and hence ΔR_{Mg} and ΔR_{Mr} is discussed for some examples. The comparison of ΔR_M values obtained after the first and second developments and a conversion table for calculating R_M values from the R_F values obtained after the second development are also given.

INTRODUCTION

Thin-layer chromatography (TLC) has been used extensively to study steroids during their synthesis and also in clinical chemistry. The application of TLC to the separation of a large number of steroids of the androstane series and the possible correlation between migration and structure have been discussed by LISBOA¹⁻³. The behaviour of the acetates, formates, 2,4-dinitrophenylhydrazones (2,4-DNPHs), bromides and oxidation products of some C_{19} -steroids has been studied by FEHÉR⁴. In this work, the chromatographic behaviour of some 17-ketosteroids (17-KS) and their 2,4-DNPHs was studied by extending the method to the results obtained by multiple development for the calculation of R_M values and hence ΔR_{Mg} and ΔR_{Mr} .

EXPERIMENTAL

Materials

Reflexing silica gel sheets of Silufol UV_{254} (Kavalier, Czechoslovakia) with dimensions of 15×15 cm and with a 0.1 mm layer of silica gel and an inert inorganic luminiscent indicator were used for TLC. Systematic names, trivial names, abbreviations and sources of the preparations are listed in Table I. The solvents used for the development of the chromatograms were re-distilled; chloroform con-

J. Chromalogr., 71 (1972) 319-328

1.24 $\varphi^{(1)} \in$ TABLE I SYSTEMATIC NAMES, TRIVIAL NAMES AND SOURCES OF THE 17-KETOSTEROIDS STUDIED

. ÷

β ⁴ Hydroxyandrost-5-en-17-one Dehydroepiandrosterone 3β01β ⁵ A17one a 3z ² Hydroxy-5z ² androstan-17-one Androsterone 3zo15gA17one a 3z ² Hydroxy-5g ² androstan-17-one Etiocholanolone 3zo15gA17one a 3z ² Hydroxy-5g ² androstan-17-one 11-Hydroxyandrosterone 3zo15gA17one b 3z ² Hydroxy-5g ² androstan-17-one 11-Hydroxyetiocholanolone 3zo15gA17one b 3z ² Hydroxy-5g ² androstan-17-one 11-Hydroxyetiocholanolone 3zo15gA11,17one b 3z ² Hydroxy-5g ² androstan-11,17-dione 11-Oxoandrosterone 3zo15gA11,17one b 3z ² Hydroxy-5g ² androstane-11,17-dione 11-Oxoandrosterone 3zo15gA11,17one b 3z ² Hydroxy-5g ² androstane-11,17-dione 11-Oxoandrosterone 3zo15gA11,17one b 3z ² Hydroxy-5g ² androstane-11,0 11-Oxoandrosterone 3zo15gA11,17one b 3z ² Hydroxy-5g ² androstane-11,0 11-Oxoandrosterone 3zo15gA11,17one c 3z ² Hydroxy-5g ² androstane-11,0 11-Oxoandrosterone 3zo15gA11,17one c 3z ² Hydroxy-5g ² androstane-11,0 11-Oxoandrosterone 3zo15gA11,17one c 3z ² Hydroxy-5g ² androstane-11,0 11-Oxoandrosterone 3zo15gA17,00 a 3z ² Hydroxy-5g ² androstane-11,0 1		Trivial name	Abbreviation	Source
ostan-17-one Androsterone ostan-17-one Etiocholanolone <i>c</i> -androstan-17-one I1-Hydroxyandrosterone <i>f</i> -androstan-17-one I1-Hydroxyetiocholanolone <i>i</i> -Hydroxyetiocholanolone <i>i</i> -Hydroxyetiocholanolone <i>i</i> -Hydroxyetiocholanolone <i>i</i> -Hydroxyetiocholanolone <i>i</i> -Hydroxyetiocholanolone <i>i</i> -Hydroxyetiocholanolone <i>i</i> -1, <i>i</i> 7-dione <i>i</i> -Oxoandrosterone <i>i</i> -Oxoandrosterone <i>i</i> -Oxoandrosterone <i>i</i> -trione Androsterone <i>i</i> -trione Adrenosterone <i>i</i> -trione Adrenosterone		droepiandrosterone	3Bold ⁵ Ar7one	5
ostani-17-one Etiocholanolone e-androstan-17-one 11-Hydroxyandrosterone Fandrostan-17-one 11-Hydroxyetiocholanolone B-androstan-11,17-dione 11-Oxoandrosterone ostane-11,17-dione 11-Oxoandrosterone I1-Oxoandrosterone 11-Oxoandrosterone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone frame-11,17-dione 11-Oxoetiocholanolone ostane-11,00 11-Oxoetiocholanolone frame-11,17-dione 11-Oxoetiocholanolone frame-11,17-dione 11-Oxoetiocholanolone ostane-11,00 11-Oxoetiocholanolone frame-11,17-dione 11-Oxoetiocholanolone frame-11,17-dione Androsterone frame Androsterone Androsterone Andreosterone	et en e Li Pertett Angele	osterone	3col5cA17one	đ
-androstan-17-one 11-Hydroxyandrosterone Fandrostan-17-one 11-Hydroxyetiocholanolone ostane-11,17-dione 11-Oxoandrosterone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ione 11-Oxoetiocholanolone one Androsterone ione Androsterone frione Androsterone frione Androsterone	n de la composition la composition generalise generalise	holanolone	3x0l5\$A17one	с:
Pandrostan-17-one 11-Hydroxyetiocholanolone ostane-11,17-dione 11-Oxoandrosterone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ostane-11,17-dione 11-Oxoetiocholanolone ostane-17-one Epiandrosterone one Androstenedione fione Androstenedione frione Androsterone	arj 19 - Bri Constru	ydroxyandrosterone	3¢,11 fol5¢A17one	9
ostane-11, 17-dione 11-Oxoandrosterone ostane-11, 17-dione 11-Oxoetiocholanolone ostane-17-one Epiandrosterone Androstenedione Androstenedione lione Androstenedione -trione Adrenosterone		ydroxyetiocholanolone	32,11fol5fA17one	IJ
ostane-11, 17-dione 11-Oxoetiocholanolone Satane-17-one Epiandrosterone One Androstenedione Inone Androstancdione Androstancone Androsterone		coandrosterone	320l52A11,170ne	.
Sstane-17-one Epiandrosterone one Androstenedione lione Androstanedione -frione Adrenosterone	an i Geor	coetiocholanolone	3¢ol5βA11,17one	J
one Androstenedione lione Androstancdione frione Adrenosterone		ldrosterone	3fol5&A17one	н
lione frione Androstanedione Adrenosterone		stenedione	d ⁴ A3, r7one	d
frione		stanedione	52A3.17one	q
frione	52-Androstan-17-one	· · · · · · · · · · · · · · · · · · ·	5%Ar7one	Ð
Adrenosterone	5β-Androstan-17-one	· · · · · · · · · · · · · · · · · · ·	5\$Ar7one	Ð
		losterone	443,11,17one	ct *

tained 0.6–1.0% of ethanol. The preparation of the 2,4-DNPHs of 17-KS was carried out by a slightly modified method of TREIBER AND OERTEL⁵.

Thin-layer chromatography

The samples were applied as small spots 2.5 cm from the edge of the 15 \times 15 cm plate, which was divided into strips with lines. The lines, 0.5 mm broad, were drawn in the layer with a narrow metal spatula or a blunt pencil to a distance of 10 mm. The plates were then heated for 30 min at 60° in a vacuum drying oven, equilibrated for 3 min in the room atmosphere and developed. One-dimensional chromatograms were developed by the ascending technique in two runs. Before the second run, the plates were heated in the same way as above. This procedure gave very good reproducibility of R_F values. For the detection of the spots of 17-KS, the vanillinsulphuric acid reaction was used⁶.

In this study, the following two systems described earlier⁷ were used: system B, chloroform-acetone (96:4); and system E, diethyl ether-light petroleum (70:30).

The developed chromatogram was left in the solvent after the front had reached the top of the layer so as to avoid a decreasing ratio of liquid-to-solid phase. This "over-running" technique has many advantages⁸. The time required was 35 min with system B and 25 min with system E.

RESULTS AND DISCUSSION

The contribution of any given functional group to the chromatographic mobility of a molecule will depend mainly on the nature of the substituent, its position and the nature of the chromatographic system. The calculation of R_M value used for the analysis of a possible correlation between migration of the steroid and its structure from $R_F < 0.05$ or $R_F > 0.90$ values is of little use. R_F values of over 0.75 and less than 0.15 are also approximations.

The R_M values were used according to the definition of BATE-SMITH AND WESTALL⁹:

$$R_{M} = \log\left(\frac{1}{R_{F}} - 1\right) \tag{1}$$

To obtain a better separation of the substances with the lowest values multiple development can be recommended, based on the assumption that re-chromatography in the same system can be considered as being a separation corresponding to a longer running distance.

This method not only gave parallel movement of spots, but also a new distribution. However, for spots with $R_F > 0.45$, the results obtained after the first development are the most valuable¹⁰. In multiple development, as discussed by LENK¹¹, the spots become flattened and hence the resolution is improved, as opposed to a longer running distance.

In the following section, the possibility of using R_F values obtained from the first and second developments for the calculation of R_M values is demonstrated. This procedure allowed the use of a higher value, ${}^{n}R_{F}$ (obtained from the multiple development), which was out of the range of the greatest experimental errors.

 ${}^{n}R_{F}$ values were introduced in order to enable the positions of the separated

J. Chromalogr., 71 (1972) 319-328

substances for n developments to be obtained¹². These can be calculated from the relationship

$${}^{n}R_{F} = I - (I - R_{F})^{n}$$
⁽²⁾

The evaluation of R_F and ${}^{n}R_F$ values for the calculation of R_M values, and hence for use in structural analysis, has the following theoretical basis.

From eqn. 2,

$$R_F = \mathbf{I} - {^n}\sqrt{\mathbf{I} - {^n}R_F} \tag{3}$$

Eqns. 1 and 3 can then be combined to give

$$R_{M} = \log\left(\frac{{}^{n}\sqrt{1-{}^{n}R_{F}}}{1-{}^{n}\sqrt{1-{}^{n}R_{F}}}\right)$$
(4)

and eqn. 4 can be written as

$$R_M = \log\left(\frac{a}{1-a}\right) \tag{5}$$

where $a = {}^{n}\sqrt{1-{}^{n}R_{F}}$. Table II can be used for converting ${}^{2}R_{F}$ into R_{M} values. Generally, it can be considered that compound A has the value

$$\Delta R_{M(A)} = m \Delta R_{M(x)} + n \Delta R_{M(y)} + o \Delta R_{M(z)} + \dots K$$
(6)

where $\Delta R_{M(x)}$, $\Delta R_{M(y)}$ and $\Delta R_{M(z)}$ are the R_M values for functional groups x, y, z; m, n, o are the numbers of particular functional groups; and K is a constant corresponding to the fundamental skeleton.

Because it is not possible to ascertain the constant K for the steroid fundamental skeleton experimentally, the R_M values obtained from 5α AI70ne and 5β AI70ne are used as a basis.

Hence, for the calculation, there are used new constants, K_0 and K_0' , from eqns. 7 and 8:

$$K + \Delta R_{M(17-CO)} + \Delta R_{M(5\alpha A)} = K_0 \tag{7}$$

$$K + \Delta R_{M(17-CO)} + \Delta R_{M(5\beta A)} = K_0'$$
(8)

The R_M values of the derived compounds are then calculated as the total sum of K_0 or K_0' and the constants for the functional groups. For practical purposes, it is important to note that from the above it appears that

 $K_0 = R_{M(5\alpha A 17 \text{one})}$

 $K_0' = R_{M(5\beta A 17 \text{one})}$

The chromatographic results for thirteen 17-KS and their 2,4-DNPHs, always separated in two runs and in the same system, are summarised in Tables III and IV. The mobilities of the 2,4-dinitrophenylhydrazone derivatives of 17-KS were greater in all instances than those of the corresponding parent substances.

The symbols ΔR_{Mg} and ΔR_{Mr} are used here with the same meanings as those used by BUSH¹³. The ΔR_{Mg} value of a radical is the ΔR_M value resulting from the replacement of a hydrogen atom in the molecule with this radical. The ΔR_{Mr} value is the ΔR_M value for the substance before and after chemical reaction.

J. Chromatogr., 71 (1972) 319-328

1 a 1

TABLE II

19**6**27

TABLE FOR CONVERSION OF 2R_F INTO R_M VALUES

$^{2}R_{F}$	R_M	$^{2}R_{F}$	R_M	² R _F	R_M	² R _F	R_M
0,01	2.298	0,26	0.788	0.51	0,367	0.76	0,020
0.02	1.995	0.27	0.767	0.52	0.351	0.77	-0.037
0.03	1.817	0.28	0.746	0.53	0.337	0.78	-0.054
0.04	1,668	0.29	0.726	0.54	0.323	0.79	-0.074
0.05	1.573	0.30	0.707	0.55	0.307	0.80	-0.093
0.0Ğ	1.494	0.31	0.688	· 0.56	0.293	0.81	-0.114
0.07	1.427	0.32	0.670	0.57	0.278	0.82	-0.134
o.oŚ	1.369	0.33	0.652	0.58	0.264	0.83	-0.155
0.09	1.306	0.34	0.635	0.59	0.249	0.84	-0.177
0.10	1,260	0.35	0.618	0.60	0.234	0.85	-0,200
0.11	1.218	0.36	0.602	0.61	0.219	0,86	0.224
0.12	1.179	0.37	0.583	0.62	0.205	0.87	-0.250
0.13	1.136	0.38	0.567	0.63	0.190	0.88	-0.277
0.14	1,103	0.39	0.552	0.64	0.176	0.89	-0.306
0.15	1,066	0.40	0.534	0.65	0.159	0.90	-0.336
0.16	1.037	0.41	0.519	0.66	0.145	0.91	0.369
0.17	1,009	0.42	0.502	0.67	0.129	0.92	-0.406
0.18	0.978	0.43	0.486	0.68	0.113	0.93	- 0,446
0.19	0.954	0.44	0.472	0.69	0.097	0.94	-0.492
0.20	0.925	0.45	0.456	0.70	0.081	0.95	0.543
0.21	0.899	0.46	0.440	0.71	0.065	0.96	-0.603
0.22	0.877	0.47	0.426	0.72	0.050	0.97	-0.680
0.23	0.853	0.48	0.412	0.73	0.033	0.98	0.785
0.24	0.829	0.49	0.397	0.74	0.015	0.99	-0.955
0.25	018,0	0.50	0.382	0.75	0.000		

 ΔR_{Mg} values calculated from the R_F values after the first and second developments show corresponding results, as can be seen from Table V, in which ΔR_{Mg} values of some hydroxyl and ketonic groups in pure steroids and their 2,4-DNPHs after the first (a) and second (b) developments are compared.

It can be seen that the greatest influence on the chromatographic mobility for both systems and for both the parent steroids and their 2,4-DNPH derivatives is given by the 3-hydroxyl group. For isomers the separation depends on the spatial configuration, and the equatorial (e) position is appreciably more reactive than the axial (a) position, as usual.

The mobility of 3-OH steroids also depends on the configuration of the 5-H group. The R_{Mg} values in both systems for the parent 3-OH steroids and their 2,4-DNPH derivatives remained identical or very similar. The introduction of one isolated unsaturated bond altered the mobility of the steroids in both systems only slightly, as can be seen by comparison of the R_F values of dehydroepiandrosterone and androsterone.

A greater difference is seen between 17-KS with an 11-OH and an 11-CO group and their 2,4-DNPHs. The $II\beta$ -hydroxyl group with rings A/B in the *cis* configuration is slightly less polar in system B. In system E there is no difference.

Mono- and bis-2,4-DNPH derivatives were formed during the production of 2,4-DNPHs if the molecule contained one or two keto groups in addition to the

KP AND KH VALUES OF 17-KETOSTEROIDS	IS OF 17-KETOSTEROIDS IN		IN TWO SOLVENT SYSTEMS AFTER THE FIRST DEVELOPMENT	FIER THE	ST DEVELOP	ELOPMENT *-DNPH derinatine		
	-System B		System E		Syster	System B	System E	E
	R	RM	RF	RM	RP	RM	RF	RM
360Ld ⁵ Ar7one	0.16	0.720	0.12	0.865	0.27	0.432	0.18	0.6 <u>5</u> 9
3col5cA17one	0.18	0.659	0.13	0.826	0.39	0.194	0.23	0.525
3zol5ßA17one	0.11	0.908	0.08	190.1	0.32	0.327	0.18	0.659
3zrrfol5zAr7one	0.03	1.510	0.05	1.279	0.15	0.753	0.13	0.826
3z11fol5fA17one	0.02	1.690	0.03	1.510	0.14	0.788	01.0	0.054
340152A11,170ne	0.05	1.279	0.03	1.510	0.20	0.600	0.07	1.128
3 2015 8A11,170ne	6.04	1.380	10.0	966.1	0.18	0.6 <u>5</u> 9.0	<u>5</u> 0.0	1.279
3fol5zA17one	0.15	0.753	0.11	0.908	0.26	0.454	0.16	0.720
A⁴A3, 170ne	0.31	0.347	0.11	0.908	0.82	0.660	0.49	0.017
5¢A3,170ne	0.45	0.087	0.23	0.528	0.82	-0.660	0.52	-0.034
5cAr7one	0.74	-0.456	L9.0	-0.308	0.85	-0.754	0.76	-0.500
58Ar7one	0.74	-0.456	0.67	0.308	0.85	-0.754	0.76	0.500
A⁴A3,11,170ne	91.0	0.720	0.03	012.1	0.52	0.034	0.15	0.753
No. of experiments	Q.	•••	Q			10		8

J: Chromalogr., 71 (1972) 319-328

324

. .

J. HAKL

Yes. 101

:

. *
· · ·
· .
•
<u>,</u>
× 4
• •
-
<u> </u>
· · ·
1-3.1
LT.
-
- main
m
_
1

 $^{2}R_{F}$ and R_{M} values of 17-ketosteroids in two solvent systems after the second development

No.	No. Steroid	Parent s	Parent substance			2,4-DNP	2,4-DNPH derivative		
		System B	B	System E		System B		System E	E
		$^{2}R_{F}$	RM	$^{2}R_{F}$	RM	$^{2}R_{F}$	R _M	2R_P	RM
	3fold5A17one	0.27	0.767	0.23	0.853	0.45	0.456	0.32	0.670
8	3zol5zA17one	0.29	0.726	0.25	0.810	0.63	0.190	0.40	0.534
ŝ	3zol5ßAr7one	0.19	0.954	0.15	1.066	0.53	0.337	0.31	0.688
4	3z11ßol5zA17one	<u>60.0</u>	1.573	60.0	1.306	0.26	0.788	0.24	0.829
ŝ	3ztrßol5ßAr7one	0.04	1.668	<u>50.0</u>	I.573	0.24	0.829	0.19	0.9 <u>5</u> 4
9	3aol5aA11,17one	0.09	1.306	0.06	1.494	0.34	0.635	0.14	1.103
7	32015ßA11,170ne	70.0	1.427	0.03	1.817	0.30	0.707	0.10	1.260
Ø	3fol5aA17one	0.26	0.788	0.20	0.925	0.43	0.486	0.28	0.746
6	A ⁴ A3, 170ne	0.47	0.426	0.19	0.954	0.95	0-543	0.71	0.065
9	5zA3.17one	0.70	180.0	0.39	0.552	0.96	0.603	0.75	0.000
II	5zA17one	6.03	0.446	0.88	-0.277	0 ^{.0}	0.603	0.92	
12	12 5ßAr7one	0.03	0.446	0.88	-0.277	0.96	0.603	0.92	
13	A ⁴ A3,170ne	0.26	0.788	90.0	1.494	0.77	0.037	0.26	o.788
ener Series Maria antis Director	No. of experiments		9		9	1	OI		S

STEROIDS. II.

e:

e protectar a caracter pet

THEIR 2,4-DINITROPHENYLHYDRAZONES IN THE ANDROSTANE S	
F SOME HYDROXYL AND KETONIC GROUPS FOR PURE STEROIDS AND THEIR 2,4-DINITROPHENYLHY	AD SECOND (b) DEVELOPMENTS
ARM ^g VALUES OF SOME H	AFTER THE FIRST (a) AND SECOND (b)

TABLE V

5.56

J. Chromalogr., 71 (1972) 319–328

Group Compound in which	Ring conformation	System B		System E	
radical is substituted		Parent substance	2.4-DNPH	Parent substance	2,4-DNPH
3-Oxo 52A17one	A/B-trans	(a) 0.54 (b) ^e 0.53	(a) ^b 0.09 (b) —	(a) 0.84 (b) ^b 0.83	(a) ^b 0.47 (b) ^c 0.41
3β-OH 52A17one	A/B-trans-3ß(e)	(a) 1.21 (b)c 1.23	(a) ^b 1.21 (b) —	(a) ^a 1.22 (b) ^b 1.20	(a) ^b 1.22 (b) 1.15
3œ-OH 5æA17one 5ßA17one	A/B-trans-3x(a) A/B-cis-3x(e)	(a) 1.11 (b)c 1.17 (a) 1.36 (b)c 1.40	(a) ^b 0.95 (b) (a) ^b 1.08 (b)	(a) ^a 1.13 (b) ^b 1.09 (a) ^a 1.37 (b) ^b 1.34	(a) ^b 1.02 (b) ^c 0.94 (a) ^b 1.16 (b) ^c 1.09
11β-OH 320152A170ne 32015βA170ne	A/B-trans-3x(a) A/B-cis-3x(e)				(a) ^a 0.30 (b) 0.29 (a) ^a 0.29 (b) 0.27 (b) 0.27
.1-Oxo 3xol5xA17one 3xol5xA17one A4A2 17000	A/B-trans-3z(a) A/B-cis-3z(e)				

SERIES

326

iden Note

嘲

* Calculated with one or both R_P values in the region 0.15-0.05. b Calculated with one or both R_P values in the region 0.75-0.90. • Calculated with an R_P value of 0.03, 0.04 or 0.91-0.93.

•••.

II-keto group³. The II-keto group is known to be unreactive towards all carbonyl reagents.

The following order of decreasing polarity was found for the functional hydroxyl groups studied:

Parent substance:	$3\alpha OH(e)$
	$_{3\beta OH(e)}$
	$3\alpha OH(a)$
	11βOH
2,4-DNPH derivative:	$_{3\beta OH(e)}$
	$3\alpha OH(e)$
	$3\alpha OH(a)$
	11β ΟΗ
	÷ , ,

The orders of decreasing polarity in both systems are similar.

TABLE VI

Sec.

 ΔR_{Mr} values for 2,4-dinitrophenylhydrazones of 17-ketosteroids after the first (4) and second (b) developments

Group that	Parent substance	ΔR_{Mr}	-
is converted		System B	System E
17-keto	5¤A170ne	(a) ^b -0.30 (b)	(a) b - 0.19 (b) c - 0.13
	5βA170ne	(a) ^b 0.30 (b)	$(a)^{b} - 0.19$ $(b)^{c} - 0.13$
	$_{3\beta \text{ol}} \Delta^{5} \text{A170ne}$	(a) -0.29 (b) -0.31	(a) $a - 0.21$ (b) -0.18
	320152A170ne	(a) -0.46 (b) -0.54	(a) -0.32 (b) -0.28
	$3\alpha ol_5 \beta A_{17} one$	(a) $a - 0.58$ (b) $- 0.62$	(a) -0.40 (b) -0.38
	3α , 11 β ol 5α A170ne	(a) -0.76 (b) -0.78	$(a)^{n} - 0.45$ (b) $(a)^{n} - 0.48$
	3α,11β0l5βA170nc	(a) $$ (b) $c - 0.84$	(a) ^c -0.56 (b) ⁿ -0.62
	3xol5xA11,17one	$(a)^{n} - 0.68$ $(b)^{n} - 0.67$	$(a)^{\circ} - 0.38$ $(b)^{a} - 0.39$
	$3\alpha ol_5\beta A_{11,170}$ ne	$(a)^{c} - 0.72$ $(b)^{a} - 0.72$	(a) (b) °0.56
	$_{3\beta ol_{5}lpha A_{17}one}$	(a) -0.27 (b) -0.30	(a) $a - 0.19$ (b) $- 0.18$
3,17-diketo	5&A3,170ne	(a) ^b 0.75 (b)	(a) —0.56 (b) —0.55
⊿ ⁴3,17-diketo	⊿4A3,170ne	(a) ^b -1.01	$(a)^{a} - 0.92$
	⊿4A3,11,170ne	(b) (a)0.75 (b) ^b 0.82	(b) —0.89 (a) ^c —0.76 (b) ^a 0.71

^B Calculated with one or both R_F values in the region 0.15-0.05.

^b Calculated with one or both R_F values in the region 0.75-0.90.

^o Calculated with an R_F value of 0.03, 0.04 or 0.91–0.93.

Table VI shows ΔR_{Mr} values for the conversion of 17-0x0, 3,17-dioxo and Δ^4 3,17-dioxo groups to their mono- or bis-2,4-DNPHs. The ΔR_{Mr} values for 5 α A170ne and 5 β A170ne are equal in both systems. In all other instances the β -androstane derivatives have a lower value than the corresponding α -androstane derivatives. This observation supports the earlier results obtained by FEHÉR⁴. The increase in ΔR_{Mr} values in both solvent systems is not parallel; the greatest differences were observed in this work for the II-substituted derivatives.

REFERENCES

- 1 B. P. LISBOA, J. Chromatogr., 13 (1964) 391.
- 2 B. P. LISBOA, J. Chromatogr., 19 (1965) 81.
- 3 B. P. LISBOA, J. Chromatogr., 19 (1965) 333.
- 4 T. FEHER, J. Chromatogr., 19 (1965) 551.
- 5 L. TREIBER AND G. W. OERTEL, Z. Klin. Chem. Biochem., 5 (1967) 83.
- 6 B. P. LISBOA AND E. DICZFALUSY, Acta Endocrinol., 43 (1963) 545.
- 7 J. HAKL, J. Chromatogr., 61 (1971) 183.
- 8 M. S. DALLAS, J. Chromatogr., 17 (1965) 267.
- 9 E. C. BATE-SMITH AND R. G. WESTALL, Biochim. Biophys. Acta, 4 (1950) 427.
- 10 E. SHARZ AND W. EGELS, Planta Med., 6 (1958) 148.
- 11 H. P. LENK, Z. Anal. Chem., 184 (1961) 107.
- 12 E. STAHL, Thin-Layer Chromatography, Springer, Berlin, Heidelberg, New York, 2nd ed., 1960. 13 I. E. BUSH, The Chromatography of Steroids, Pergamon Press, Oxford, 1961.

hter en herden en herde met er herde er herde er er et here er er er herde er er here er herde er herde er her Andere er her er herde mennen verter er herde er er her er her er herde er herde er herde er herde er herde er h

is de arrier an green light give a daile give a calimet reference a cali

CONTRACTOR OF A

J. Chromatogr., 71 (1972) 319-328